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Description

The goal of this algorithm is to detect the time of arrival of a signal of interest in a 1D noisy back-
ground time series. The basic concept is to monitor non-noise frequency components using a windowed
FFT scheme. The time of arrival of the signal should correspond to the time of arrival of non-noise
frequencies.

One potential benefit of working in the frequency space is that the signal to noise ratio can be
greater. A second benefit is that one can monitor any subset of frequencies that are considered relevant.
Potential difficulties include the need for significant pre-signal data, the presence of non-noise features
in the pre-signal, and the use of a user-determined sensitivity parameter.

Mathematical Principles

Consider the sequence A = {a1, a2, ..., an} of real-valued signal amplitudes and the corresponding
sequence of time stamps T = {t1, t2, ..., tn}, where ti < ti+1. For our discussion we will use the unitless
time convention ti = i. We define subsequences Ai,j = {ai, ai+1, ..., aj} of length h = j − i + 1.
For example, A1,n = A. We also define the element notation on sequences Ai,j as Ai,j(k) = ai+k−1.
An synthetic example time sequence is shown in Figure ??. In this example, n = 4500 and the
signal onset time is at t165. Zero mean Gaussian noise of variance 2 corrupts an otherwise clean
signal of fourier components of frequencies ωg = 2π(3g − 1), k = 1, ..., 10 and an envelope function
(t − t165)exp(−(t − t165)/120).

We next consider the FFT signature on sequences Ai,j . Let Bi,j = mod(FFT (Ai,j)) = {b1, b2, ..., bh}.
The bk are the moduli of the components returned by a fast fourier transform of Ai,j with correspond-
ing frequencies ωk = 2π(k − 1)/h. Thus, b1 is the zero frequency amplitude offset of Ai,j , b2 the
lowest frequency signature given the sequence size h, etc. The initial portion of the b2 signature of the
example time sequence is shown in Figure ??(top) for h = 64. The signal onset is clearly shown as a
rise in b2 near the expected onset time t165.

To arrive at an objective procedure for determining the time of arrival, t0, we define the contribution
sequence Ci,j with elements Ci,j(k) = |(Bi,j(k) − B̄i,j−1(k))|/B̄i,j−1(k), where B̄i,j−1(k) = (1/(j −

h + 1))
∑j

p=h Bp−h+1,p. The contribution sequence Ci,j is the relative deviation in Bi,j from the
running mean of Bi,j . A portion of Ci,j for the example sequence at k = 2 and h = 50 is shown in
Figure ??(bottom). Time of arrival extraction requires two steps. First, we compute the sequence
Ci,j(k) for k = h − 1, ..., k∗ until Ci,j(k) exceeds a sensitivity threshold. Figure ??(bottom) shows
the results of these calcuations with a sensitivity threshold value of 3. Second. we use the longest
subsequence {bj , ...bk∗} such that bq < bq+1, j ≤ q < k∗ to provide a linear extrapolation to the time
axis. The time intercept of this line is the time of arrival. We round the result to the nearest sequence
time so that t0 ∈ T . This linear extrapolation for the example is shown as a red line in Figure ??(top).
In this case the actual time of arrival was recovered t0 = 165.

A quick test was performed on strain gauge data from threaded assembly experiments. The time of
arrival results for twelve scenarios are shown in Figure /reffig:toa. Blue circles show the toa computed
by this algorithm from raw *.wft data with nondefault settings of toff=100000 and sens=6. The red
circles show the expert oppinion times of arrival.

The above algorithm can be modified to account for known data features and expert knowledge.
Some discussion is given in the section on usage.
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Figure 1: Example synthetic time trace with Gaussian noise. The time of signal onset is t0 = 165.

Physical and Engineering Principles

This time of arrival algorithm relies on a few important assumptions, none of which are unique to the
Threaded Assembly data.

First, the signal of interest is assumed to begin at a time when the frequency content of the time
series just begins to contain non-noise-like characteristics. This frequency signature can be known or
assumed. For accelerometer and strain gauge data initially in a quiescent state, this assumption is
certainly valid.

Second, the time series should be prepended with data that does not contain frequencies of interest
in time of arrival detection. Offsets, linear drift, and frequencies not near ωk should not significantly
affect algorithm performance.

For accelerometer and strain gauge data initially in a quiescent state, these assumptions are certainly
reasonable.

Usage

The Matlab script that runs the algorithm is reproduced below. The comments and notations address
parameter selection. It is important to note that default parameter values should work very well for
many scenarios.

function [toa]=TOA(data,sens,toff,wind,freq,lsfg);

%

% TOA returns the time of arrival of a signal within a

% data set. Tom Asaki (667-5787) (asaki@lanl.gov)

%

% EXAMPLE USAGE:

% [toa]=TOA(data)

% [toa]=TOA(data,sens)

% [toa]=TOA(data,[],toff)

% [toa]=TOA(data,sens,toff,wind,freq,lsfg)

%

% INPUTS:

% data vector of data values treated as as amplitudes

% in a time sequence.

% sens a sensitivity factor for determining when low-

% frequency components are present above noise

% level in the frequency signature. Default = 3.
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Figure 2: The top figure shows the running windowed FFT moudlus for the lowest frequency using a
window size of 64. The bottom figure is the corresponding contribution sequence defined in the text.
The red line shows the extrapolation to the time axis for determining the time of arrival.
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Figure 3: Time of arrival results for threaded assembly strain gauge data. Blue = calculated, red =
expert oppinion.
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% Typical ranges are 2 to 4 and sens must be >=1.

% sens=[] is equivalent to setting the default.

% sens operates counterintuitively in that lower

% values lead to signal onset determinations that

% are more sensitive to noise fluctuations,

% leading to earlier toa.

% toff nonnegative time step offset. This can be used

% to ignore early values for either reasons of

% compuational time or the presence of early time

% signal features the user wishes to ignore.

% Default = 0. toff=[] is equivalent to setting

% the default.

% wind window size over which the frequency content of

% the signal is examined. The user can select

% this size to reduce the effects of noise. The

% user can also modify the size to select a

% particular low frequency of interest (along with

% freq variable described below). wind >= 8.

% Default = 64. wind=[] is equivalent to setting

% the default.

% freq integer for selecting the frequency component of

% interest from the fft. freq = 1 corresponds to

% the zero frequency amplitude offset, freq=2

% corresponds to the low frequecy determined by

% the size of wind, etc. 1 <= freq <= wind.

% Default = 2. freq=[] is equivalent to setting

% the default.

% lsfg linear suppression flag. lsfg set to ~0 means

% that the algorithm will subtract the linear

% contribution from the windowed data before

% computing the fft. Default=1. lsfg = [] is

% equivalent to setting the default.

%

% OUTPUTS:

% toa the time of arrival of the signal in units of

% signal ticks -- the signal is deemed to arrive

% at the toa’th value in the input signal. If no

% time of arrival was reliably determined then

% toa is returned as 0.

%

% NOTES:

% (1) It seems reasonable to automate a default choice for

% both freq and wind based on the fft of the entire signal.

% This is not complete and maybe not useful.

% (2) A default sens is more difficult but might be

% extracted from a windowed fft signal taken over a large

% domain.

% (3) This method is sensitive to the amount of presignal

% (before onset). That is, it requires that the presignal

% be larger than wind by a factor of at least 2 for

% reliable results.

% (4) This method will be fooled by presignal features.

% toff should be used to take care of this, or data should

% be pre-truncated or preprocessed.

% (5) lsfg should be used with caution. If the pre-signal

% is expected to be corrupted by linear or very low
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% frequency drift then lsfg=1 may be helpful.

%

% ALGORITHM:

% (1) compute windowed ffts on the data at one tick

% increments.

% (2) concurrently compute the running mean of this fft

% value

% (3) continue the first two steps until the sensitivity

% requirement is met: freq amplitude is sens times the

% mean above the mean. This is the criteria that onset

% is happening.

% (4) use recent fft values to back out toa by linear

% extrapolation. The points use are those corresponding

% to increasing values of the test in step 3.

%

%%%%% INITIALIZATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%

%%% define default values on inputs

sens_def=3;

toff_def=0;

wind_def=64;

freq_def=2;

lsfg_def=1;

%%% set default values of inputs

if nargin<6 ; lsfg=lsfg_def ; end

if nargin<5 ; freq=freq_def ; end

if nargin<4 ; wind=wind_def ; end

if nargin<3 ; toff=toff_def ; end

if nargin<2 ; sens=sens_def ; end

if length(lsfg)==0 ; lsfg=lsfg_def ; end

if length(freq)==0 ; freq=freq_def ; end

if length(wind)==0 ; wind=wind_def ; end

if length(toff)==0 ; toff=toff_def ; end

if length(sens)==0 ; sens=sens_def ; end

%%% fix input parameter values

freq = round(min(wind,max(2,freq)));

wind = round(max(8,wind));

toff = round(max(0,toff));

sens = max(1,sens);

lsfg=lsfg~=0;

%%% other stuff

shft=toff+wind-1;

data=data(:);

%%%%% MAIN ROUTINE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% search for onset

k=0;

ftest=1;

etest=1;

while ftest & etest

k=k+1;
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if lsfg

[x,y,m,b]=fitline(0:wind-1,data(k+toff:k+shft));

fftdata(:,k)=abs(fft(data(k+toff:k+shft)-y));

else

fftdata(:,k)=abs(fft(data(k+toff:k+shft)));

end

fftdatamean(k)=mean(fftdata(freq,1:k));

onsetfactor(k)=abs(fftdata(freq,k)-fftdatamean(k))/fftdatamean(k);

ftest=onsetfactor(k) < sens;

etest=(k+shft) < length(data);

end

diffonsetfactor=diff(onsetfactor);

%%% modify onset by back extrapolation

if etest

kk=k;

while diffonsetfactor(kk-1)>0

kk=kk-1;

end

[xx,yy,m,b] = fitline(kk:k,fftdata(freq,kk:k));

timeintercept=-b/m;

toa=round(timeintercept+shft);

else

toa=0;

end

return

%%%%% INTERNAL FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%

function [xx,yy,m,b] = fitline(x,y)

% Subroutine FITLINE computes the least squares linear

% fit to the coordinates (x,y). It returns the line

% slope (m) and intercept (b) such that y=mx+b, and

% discete line description (xx,yy) where xx=x(:).

A=[ones(size(x(:))) x(:)];

c=A\y(:);

b=c(1);

m=c(2);

xx=x(:);

yy=b+m*x(:);

return

%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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